Using Live Online Communication to Overcome Barriers to Learning

Marco Pollanen

Department of Mathematics
Trent University

August 10, 2006
Outline

1 Online Office Hours
 - Motivation
 - Mathematics Communication
 - enVision Software

2 Learning Outcomes
 - Instructor Observations
 - Quantitative Results
 - Qualitative Results

3 Future Work and Conclusions
 - Open Questions
 - enVision 2.0
 - Conclusion
 - References
Outline

1 Online Office Hours
 • Motivation
 • Mathematics Communication
 • enVision Software

2 Learning Outcomes
 • Instructor Observations
 • Quantitative Results
 • Qualitative Results

3 Future Work and Conclusions
 • Open Questions
 • enVision 2.0
 • Conclusion
 • References
Motivation: Mathematics

Math Anxiety

- Most introductory courses are taught to non-math majors
- Wide range in abilities and motivations of students
- Many of these students fear mathematics
- Surveys suggest 85% of students suffer from some form of math anxiety
- Few students participate in class or attend office hours

Office Hours

- Increased contact outside the classroom correlates positively with student retention, academic performance, satisfaction (Nadler & Nadler 2000)
- However, office hour attendance is very infrequent and superficial with the majority of visits at less than 10 minutes
- Anecdotal evidence suggests that in mathematics, the use of office hours is no better
Math Anxiety

- Most introductory courses are taught to non-math majors
- Wide range in abilities and motivations of students
- Many of these students fear mathematics
- Surveys suggest 85% of students suffer from some form of math anxiety
- Few students participate in class or attend office hours

Office Hours

- Increased contact outside the classroom correlates positively with student retention, academic performance, satisfaction (Nadler & Nadler 2000)
- However, office hour attendance is very infrequent and superficial with the majority of visits at less than 10 minutes
- Anecdotal evidence suggests that in mathematics, the use of office hours is no better
Motivation: Mathematics

Math Anxiety

- Most introductory courses are taught to non-math majors
- Wide range in abilities and motivations of students
- Many of these students fear mathematics
- Surveys suggest 85% of students suffer from some form of math anxiety
- Few students participate in class or attend office hours

Office Hours

- Increased contact outside the classroom correlates positively with student retention, academic performance, satisfaction (Nadler & Nadler 2000)
- However, office hour attendance is very infrequent and superficial with the majority of visits at less than 10 minutes
- Anecdotal evidence suggests that in mathematics, the use of office hours is no better
Motivation: Mathematics

Math Anxiety

- Most introductory courses are taught to non-math majors
- Wide range in abilities and motivations of students
- Many of these students fear mathematics
- Surveys suggest 85% of students suffer from some form of math anxiety
- Few students participate in class or attend office hours

Office Hours

- Increased contact outside the classroom correlates positively with student retention, academic performance, satisfaction (Nadler & Nadler 2000)
- However, office hour attendance is very infrequent and superficial with the majority of visits at less than 10 minutes
- Anecdotal evidence suggests that in mathematics, the use of office hours is no better
Motivation: Mathematics

Math Anxiety

- Most introductory courses are taught to non-math majors
- Wide range in abilities and motivations of students
- Many of these students fear mathematics
- Surveys suggest 85% of students suffer from some form of math anxiety
- Few students participate in class or attend office hours

Office Hours

- Increased contact outside the classroom correlates positively with student retention, academic performance, satisfaction (Nadler & Nadler 2000)
- However, office hour attendance is very infrequent and superficial with the majority of visits at less than 10 minutes
- Anecdotal evidence suggests that in mathematics, the use of office hours is no better
Motivation: Mathematics

Math Anxiety
- Most introductory courses are taught to non-math majors
- Wide range in abilities and motivations of students
- Many of these students fear mathematics
- Surveys suggest 85% of students suffer from some form of math anxiety
- Few students participate in class or attend office hours

Office Hours
- Increased contact outside the classroom correlates positively with student retention, academic performance, satisfaction (Nadler & Nadler 2000)
- However, office hour attendance is very infrequent and superficial with the majority of visits at less than 10 minutes
- Anecdotal evidence suggests that in mathematics, the use of office hours is no better
Motivation: Mathematics

Math Anxiety
- Most introductory courses are taught to non-math majors
- Wide range in abilities and motivations of students
- Many of these students fear mathematics
- Surveys suggest 85% of students suffer from some form of math anxiety
- Few students participate in class or attend office hours

Office Hours
- Increased contact outside the classroom correlates positively with student retention, academic performance, satisfaction (Nadler & Nadler 2000)
- However, office hour attendance is very infrequent and superficial with the majority of visits at less than 10 minutes
- Anecdotal evidence suggests that in mathematics, the use of office hours is no better
Motivation: Mathematics

Math Anxiety

- Most introductory courses are taught to non-math majors
- Wide range in abilities and motivations of students
- Many of these students fear mathematics
- Surveys suggest 85% of students suffer from some form of math anxiety
- Few students participate in class or attend office hours

Office Hours

- Increased contact outside the classroom correlates positively with student retention, academic performance, satisfaction (Nadler & Nadler 2000)
- However, office hour attendance is very infrequent and superficial with the majority of visits at less than 10 minutes
- Anecdotal evidence suggests that in mathematics, the use of office hours is no better
Motivation: Mathematics

Math Anxiety
- Most introductory courses are taught to non-math majors
- Wide range in abilities and motivations of students
- Many of these students fear mathematics
- Surveys suggest 85% of students suffer from some form of math anxiety
- Few students participate in class or attend office hours

Office Hours
- Increased contact outside the classroom correlates positively with student retention, academic performance, satisfaction (Nadler & Nadler 2000)
- However, office hour attendance is very infrequent and superficial with the majority of visits at less than 10 minutes
- Anecdotal evidence suggests that in mathematics, the use of office hours is no better
Motivation: Mathematics

Math Anxiety
- Most introductory courses are taught to non-math majors
- Wide range in abilities and motivations of students
- Many of these students fear mathematics
- Surveys suggest 85% of students suffer from some form of math anxiety
- Few students participate in class or attend office hours

Office Hours
- Increased contact outside the classroom correlates positively with student retention, academic performance, satisfaction (Nadler & Nadler 2000)
- However, office hour attendance is very infrequent and superficial with the majority of visits at less than 10 minutes
- Anecdotal evidence suggests that in mathematics, the use of office hours is no better
Motivation: Mathematics

Math Anxiety
- Most introductory courses are taught to non-math majors
- Wide range in abilities and motivations of students
- Many of these students fear mathematics
- Surveys suggest 85% of students suffer from some form of math anxiety
- Few students participate in class or attend office hours

Office Hours
- Increased contact outside the classroom correlates positively with student retention, academic performance, satisfaction (Nadler & Nadler 2000)
- However, office hour attendance is very infrequent and superficial with the majority of visits at less than 10 minutes
- Anecdotal evidence suggests that in mathematics, the use of office hours is no better
Internet-based Communication

According to a study by Jones and Johnson-Yale (2005), based on a survey from May 2004:

- 98 percent of faculty use the Internet to communicate with their students
- 92 percent of faculty use e-mail to communicate with their students
- 73 percent report communication with students has increased as a result of e-mail
- Amount of e-mail vs face-to-face contact: 30% same, 30% more
- 37 percent of faculty use chat-rooms
- Other technologies: IM and blogs

Marco Pollanen
Using Live Online Communication to Overcome Barriers to Learning
According to a study by Jones and Johnson-Yale (2005), based on a survey from May 2004:

- 98 percent of faculty use the Internet to communicate with their students
- 92 percent of faculty use e-mail to communicate with their students
- 73 percent report communication with students has increased as a result of e-mail
- Amount of e-mail vs face-to-face contact: 30% same, 30% more
- 37 percent of faculty use chat-rooms
- Other technologies: IM and blogs
According to a study by Jones and Johnson-Yale (2005), based on a survey from May 2004:

- 98 percent of faculty use the Internet to communicate with their students
- 92 percent of faculty use e-mail to communicate with their students
- 73 percent report communication with students has increased as a result of e-mail
- Amount of e-mail vs face-to-face contact: 30% same, 30% more
- 37 percent of faculty use chat-rooms
- Other technologies: IM and blogs
Internet-based Communication

According to a study by Jones and Johnson-Yale (2005), based on a survey from May 2004:

- 98 percent of faculty use the Internet to communicate with their students
- 92 percent of faculty use e-mail to communicate with their students
- 73 percent report communication with students has increased as a result of e-mail
- Amount of e-mail vs face-to-face contact: 30% same, 30% more
- 37 percent of faculty use chat-rooms
- Other technologies: IM and blogs
According to a study by Jones and Johnson-Yale (2005), based on a survey from May 2004:

- 98 percent of faculty use the Internet to communicate with their students
- 92 percent of faculty use e-mail to communicate with their students
- 73 percent report communication with students has increased as a result of e-mail
- Amount of e-mail vs face-to-face contact: 30% same, 30% more
- 37 percent of faculty use chat-rooms
- Other technologies: IM and blogs
According to a study by Jones and Johnson-Yale (2005), based on a survey from May 2004:

- 98 percent of faculty use the Internet to communicate with their students
- 92 percent of faculty use e-mail to communicate with their students
- 73 percent report communication with students has increased as a result of e-mail
- Amount of e-mail vs face-to-face contact: 30% same, 30% more
- 37 percent of faculty use chat-rooms
- Other technologies: IM and blogs
Internet-based Communication

According to a study by Jones and Johnson-Yale (2005), based on a survey from May 2004:

- 98 percent of faculty use the Internet to communicate with their students
- 92 percent of faculty use e-mail to communicate with their students
- 73 percent report communication with students has increased as a result of e-mail
- Amount of e-mail vs face-to-face contact: 30% same, 30% more
- 37 percent of faculty use chat-rooms
- Other technologies: IM and blogs
Internet-based Communication

According to a study by Jones and Johnson-Yale (2005), based on a survey from May 2004:

- 98 percent of faculty use the Internet to communicate with their students
- 92 percent of faculty use e-mail to communicate with their students
- 73 percent report communication with students has increased as a result of e-mail
- Amount of e-mail vs face-to-face contact: 30% same, 30% more
- 37 percent of faculty use chat-rooms
- Other technologies: IM and blogs
The Internet is largely text-based:
- e-mail, instant messaging, message boards, blogs, news groups
- Writing inline expression in text is difficult for students
- Ambiguous statements: Does $1/x+y$ mean $\frac{1}{x+y}$ or $\frac{1}{x} + y$?
- Other expressions: $1/2x$, x^2, α, β, …

\[
\phi_n(\kappa) = \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R} \left[R^2 \frac{\partial D_n(R)}{\partial R} \right] dR
\]

\[
\begin{pmatrix}
a & b & c \\
d & e & f \\
g & h & i
\end{pmatrix}^{-1}
\]
Online Mathematics Communication

The Internet is largely text-based:

- e-mail, instant messaging, message boards, blogs, news groups
- Writing inline expression in text is difficult for students
- Ambiguous statements: Does \(1/x+y\) mean \(\frac{1}{x+y}\) or \(\frac{1}{x} + y\)?
- Other expressions: \(1/2x, x2, \alpha, \beta, \ldots\)

\[
\phi_n(\kappa) = \frac{1}{4\pi^2 \kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R} \left[R^2 \frac{\partial D_n(R)}{\partial R} \right] dR
\]

\[
\begin{pmatrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{pmatrix}^{-1}
\]
Online Mathematics Communication

The Internet is largely text-based:
- e-mail, instant messaging, message boards, blogs, news groups
- Writing inline expression in text is difficult for students
- Ambiguous statements: Does $\frac{1}{x+y}$ mean $\frac{1}{x+y}$ or $\frac{1}{x} + y$?
- Other expressions: $\frac{1}{2x}$, x^2, α, β, …

$$\phi_n(\kappa) = \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R} \left[R^2 \frac{\partial D_n(R)}{\partial R} \right] \, dR$$

$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}^{-1}$$
Online Mathematics Communication

The Internet is largely text-based:

- e-mail, instant messaging, message boards, blogs, newsgroups
- Writing inline expressions in text is difficult for students
- Ambiguous statements: Does $1/x+y$ mean $\frac{1}{x+y}$ or $\frac{1}{x} + y$?
- Other expressions: $1/2x$, x^2, α, β, ...

$$\phi_n(\kappa) = \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R} \left[R^2 \frac{\partial D_n(R)}{\partial R} \right] dR$$

$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}^{-1}$$
The Internet is largely text-based:

- e-mail, instant messaging, message boards, blogs, news groups
- Writing inline expression in text is difficult for students
- Ambiguous statements: Does $1/x+y$ mean $\frac{1}{x+y}$ or $\frac{1}{x} + y$?
- Other expressions: $1/2x$, x^2, α, β, ...

$$\phi_n(\kappa) = \frac{1}{4\pi^2 \kappa^2} \int_{0}^{\infty} \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R} \left[R^2 \frac{\partial D_n(R)}{\partial R} \right] dR$$

$$\begin{pmatrix} a & b & c \\ d & e & f \\ g & h & i \end{pmatrix}^{-1}$$
Online Mathematics Communication

The Internet is largely text-based:

- e-mail, instant messaging, message boards, blogs, news groups
- Writing inline expression in text is difficult for students
- Ambiguous statements: Does $1/x+y$ mean $\frac{1}{x+y}$ or $\frac{1}{x} + y$?
- Other expressions: $1/2x$, x^2, α, β, ...
The Internet is largely text-based:

- e-mail, instant messaging, message boards, blogs, news groups
- Writing inline expression in text is difficult for students
- Ambiguous statements: Does $1/x+y$ mean $\frac{1}{x+y}$ or $\frac{1}{x} + y$?
- Other expressions: $1/2x$, x^2, α, β, \ldots

$$
\phi_n(\kappa) = \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R} \left[R^2 \frac{\partial D_n(R)}{\partial R} \right] dR
$$

$$
\begin{pmatrix}
 a & b & c \\
 d & e & f \\
 g & h & i
\end{pmatrix}^{-1}
$$
The Internet is largely text-based:

- e-mail, instant messaging, message boards, blogs, news groups
- Writing inline expression in text is difficult for students
- Ambiguous statements: Does $\frac{1}{x+y}$ mean $\frac{1}{x+y}$ or $\frac{1}{x} + y$?
- Other expressions: $\frac{1}{2x}$, x^2, α, β, …

$$
\phi_n(\kappa) = \frac{1}{4\pi^2\kappa^2} \int_0^\infty \frac{\sin(\kappa R)}{\kappa R} \frac{\partial}{\partial R} \left[R^2 \frac{\partial D_n(R)}{\partial R} \right] dR
$$

$$
\begin{pmatrix}
a & b & c \\
d & e & f \\
g & h & i \\
\end{pmatrix}^{-1}
$$
Visual Mathematical Content

\[T_\ell(A)/T_\ell(A)_t = T_\ell(A^\vee)_t \]
\[\varphi \]
\[T_\ell(B)/T_\ell(B)_t = T_\ell(B^\vee)_t \]
What is enVision?
- Chat/Whiteboard program that makes it easy to input mathematical content
- Loads into a standard browser (IE, Safari, Firefox, Opera, ...)
- Written as a Java 1.1 applet (default in IE)
- 58KB in size

Availability: Free. Can be downloaded from www.xiom.org

Use: Anonymous online office hours. Class message boards.
enVision v1.1 Software

What is enVision?

- Chat/Whiteboard program that makes it easy to input mathematical content
- Loads into a standard browser (IE, Safari, Firefox, Opera, ...)
- Written as a Java 1.1 applet (default in IE)
- 58KB in size

Availability: Free. Can be downloaded from www.xiom.org

Use: Anonymous online office hours. Class message boards.
enVision v1.1 Software

What is enVision?

- Chat/Whiteboard program that makes it easy to input mathematical content
- Loads into a standard browser (IE, Safari, Firefox, Opera, ...)
- Written as a Java 1.1 applet (default in IE)
- 58KB in size

Availability: Free. Can be downloaded from www.xiom.org

Use: Anonymous online office hours. Class message boards.

Marco Pollanen
Using Live Online Communication to Overcome Barriers to Learning
enVision v1.1 Software

What is enVision?

- Chat/Whiteboard program that makes it easy to input mathematical content
- Loads into a standard browser (IE, Safari, Firefox, Opera, ...)
- Written as a Java 1.1 applet (default in IE)
- 58KB in size

Availability: Free. Can be downloaded from www.xiom.org

Use: Anonymous online office hours. Class message boards.
enVision v1.1 Software

What is enVision?

- Chat/Whiteboard program that makes it easy to input mathematical content
- Loads into a standard browser (IE, Safari, Firefox, Opera, ...)
- Written as a Java 1.1 applet (default in IE)
- 58KB in size

Availability: Free. Can be downloaded from www.xiom.org

Use: Anonymous online office hours. Class message boards.
enVision v1.1 Software

What is enVision?

- Chat/Whiteboard program that makes it easy to input mathematical content
- Loads into a standard browser (IE, Safari, Firefox, Opera, ...)
- Written as a Java 1.1 applet (default in IE)
- 58KB in size

Availability: Free. Can be downloaded from www.xiom.org

Use: Anonymous online office hours. Class message boards.
What is enVision?

- Chat/Whiteboard program that makes it easy to input mathematical content
- Loads into a standard browser (IE, Safari, Firefox, Opera, ...)
- Written as a Java 1.1 applet (default in IE)
- 58KB in size

Availability: Free. Can be downloaded from www.xiom.org

Use: Anonymous online office hours. Class message boards.
What is enVision?

- Chat/Whiteboard program that makes it easy to input mathematical content
- Loads into a standard browser (IE, Safari, Firefox, Opera, ...)
- Written as a Java 1.1 applet (default in IE)
- 58KB in size

Availability: Free. Can be downloaded from www.xiom.org

Use: Anonymous online office hours. Class message boards.
Quick Install (system administrator)

2. Copy the directory MathServer to anywhere on the Web server and start MathServer with the command "java -jar MathServer.jar".
3. Copy the directory enVision into a Web-accessible directory.
Using Live Online Communication to Overcome Barriers to Learning

Marco Pollanen

Outline
- Online Office Hours
- Learning Outcomes
- Future Work and Conclusions

Motivation
- Mathematics Communication
- enVision Software

Mathematics
\[\int_0^1 x^2 \, dx = \frac{1}{3} \]

- Plot imported from Maple
- Graph Paper
- Exponents can be created with cursor keys, and fractions, using underscores

Area
Area = \(\pi r^2 \)

LaTeX
\[\mathbb{Z}_2 \times \mathbb{Z}_3 \cong \mathbb{Z}_2 \times \mathbb{Z}_3 \times \mathbb{Z} / \langle (0,0,1) \rangle \]

- \(a_{11} \ldots a_{1n} \\
- \quad \vdots \\
- a_{n1} \ldots a_{nn} \]

- \(\begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} \]

- \[\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} \]
From equation (3) we see that we can find an upper bound for the probability (8) by calculating $I(A_1, \ldots, A_k)$ for each possible combination of A_1, \ldots, A_k, such that inequalities (6) are satisfied, that is

$$P \leq \sum_{a-1}^{a} \sum_{A_{i_1}=0}^{A_{i_1}} \cdots \sum_{A_{i_k}=0}^{A_{i_k}} \frac{I(A_1, \ldots, A_k)}{a^k}$$

$$< \sum_{a-1}^{a} \sum_{A_{i_1}=0}^{A_{i_1}} \cdots \sum_{A_{i_k}=0}^{A_{i_k}} \frac{1}{a^k} \left(\frac{A_{i_1} + 1}{a - 1} - \frac{A_{i_{k+1}}}{a} \right). \quad (9)$$

For a lower bound, we note that if

$$a - 1 > A_{j_1} > A_{j_2} > \ldots > A_{j_k} > 0,$$

then surely $x_{j_1} > \ldots > x_{j_k}$. Hence, we can establish the following lower bound:

$$P \geq \sum_{a-1}^{a} \sum_{A_{j_1}=1}^{A_{j_1}} \cdots \sum_{A_{j_k}=1}^{A_{j_k}} \frac{I(A_1, \ldots, A_k)}{a^k}$$

"Is this correct?"
Instructor Observations

Observations from first and second-year math classes:

- up to 40% of the class/section can attend a single office hour
- large increase in office hour participation
- a third of students don’t ask any questions
- many students for the entire hour
- a third of students clearly use an alias
- a third of students clearly use a real name
- greater multi-way dialogue
- easier to engage students
Observations from first and second-year math classes:

- up to 40% of the class/section can attend a single office hour
- large increase in office hour participation
- a third of students don’t ask any questions
- many students for the entire hour
- a third of students clearly use an alias
- a third of students clearly use a real name
- greater multi-way dialogue
- easier to engage students
Instructor Observations

Observations from first and second-year math classes:

- up to 40% of the class/section can attend a single office hour
- large increase in office hour participation
- a third of students don’t ask any questions
- many students for the entire hour
- a third of students clearly use an alias
- a third of students clearly use a real name
- greater multi-way dialogue
- easier to engage students
Instructor Observations

Observations from first and second-year math classes:

- up to 40% of the class/section can attend a single office hour
- large increase in office hour participation
- a third of students don’t ask any questions
- many students for the entire hour
- a third of students clearly use an alias
- a third of students clearly use a real name
- greater multi-way dialogue
- easier to engage students
Instructor Observations

Observations from first and second-year math classes:

- up to 40% of the class/section can attend a single office hour
- large increase in office hour participation
- a third of students don’t ask any questions
- many students for the entire hour
- a third of students clearly use an alias
- a third of students clearly use a real name
- greater multi-way dialogue
- easier to engage students
Instructor Observations

Observations from first and second-year math classes:

- up to 40% of the class/section can attend a single office hour
- large increase in office hour participation
- a third of students don’t ask any questions
- many students for the entire hour
- a third of students clearly use an alias
- a third of students clearly use a real name
- greater multi-way dialogue
- easier to engage students
Instructor Observations

Observations from first and second-year math classes:
- up to 40% of the class/section can attend a single office hour
- large increase in office hour participation
- a third of students don’t ask any questions
- many students for the entire hour
- a third of students clearly use an alias
- a third of students clearly use a real name
- greater multi-way dialogue
- easier to engage students
Instructor Observations

Observations from first and second-year math classes:

- up to 40% of the class/section can attend a single office hour
- large increase in office hour participation
- a third of students don’t ask any questions
- many students for the entire hour
- a third of students clearly use an alias
- a third of students clearly use a real name
- greater multi-way dialogue
- easier to engage students
Instructor Observations

Observations from first and second-year math classes:

- up to 40% of the class/section can attend a single office hour
- large increase in office hour participation
- a third of students don’t ask any questions
- many students for the entire hour
- a third of students clearly use an alias
- a third of students clearly use a real name
- greater multi-way dialogue
- easier to engage students
Observations from first and second-year math classes:

- up to 40% of the class/section can attend a single office hour
- large increase in office hour participation
- a third of students don’t ask any questions
- many students for the entire hour
- a third of students clearly use an alias
- a third of students clearly use a real name
- greater multi-way dialogue
- easier to engage students
Quantitative Results from Mid-Term Questionnaires

2nd-Year Discrete Mathematics at Trent University:
- \(\approx 25 \) students, mostly computer science
- 19 survey responses (after 4 office hours)
- 47% (9/19) attended office hours
- 16% (3/19) said they wanted to (although not asked)

1st-Year Calculus at Acadia University:
- Two-sections: A — 40 students, B — 30 students
- Section A: 81% (26/32) attended, 3% (1/32) wanted to
- Section A: 3% (1/32) used traditional office hours
- Section B: 43% (9/21) attended, 5% (1/21) wanted to
- Section B: 19% (4/21) used traditional office hours
Quantitative Results from Mid-Term Questionnaires

2nd-Year Discrete Mathematics at Trent University:
- ≈ 25 students, mostly computer science
- 19 survey responses (after 4 office hours)
- 47% (9/19) attended office hours
- 16% (3/19) said they wanted to (although not asked)

1st-Year Calculus at Acadia University:
- Two-sections: A — 40 students, B — 30 students
- Section A: 81% (26/32) attended, 3% (1/32) wanted to
- Section A: 3% (1/32) used traditional office hours
- Section B: 43% (9/21) attended, 5% (1/21) wanted to
- Section B: 19% (4/21) used traditional office hours
Quantitative Results from Mid-Term Questionnaires

2nd-Year Discrete Mathematics at Trent University:

- \(\approx 25 \) students, mostly computer science
- 19 survey responses (after 4 office hours)
- 47% (9/19) attended office hours
- 16% (3/19) said they wanted to (although not asked)

1st-Year Calculus at Acadia University:

- Two-sections: A — 40 students, B — 30 students
- Section A: 81% (26/32) attended, 3% (1/32) wanted to
- Section A: 3% (1/32) used traditional office hours
- Section B: 43% (9/21) attended, 5% (1/21) wanted to
- Section B: 19% (4/21) used traditional office hours
Quantitative Results from Mid-Term Questionnaires

2nd-Year Discrete Mathematics at Trent University:
- ≈ 25 students, mostly computer science
- 19 survey responses (after 4 office hours)
- 47% (9/19) attended office hours
- 16% (3/19) said they wanted to (although not asked)

1st-Year Calculus at Acadia University:
- Two-sections: A — 40 students, B — 30 students
- Section A: 81% (26/32) attended, 3% (1/32) wanted to
- Section A: 3% (1/32) used traditional office hours
- Section B: 43% (9/21) attended, 5% (1/21) wanted to
- Section B: 19% (4/21) used traditional office hours
Quantitative Results from Mid-Term Questionnaires

2nd-Year Discrete Mathematics at Trent University:
- \(\approx 25 \) students, mostly computer science
- 19 survey responses (after 4 office hours)
- 47\% (9/19) attended office hours
- 16\% (3/19) said they wanted to (although not asked)

1st-Year Calculus at Acadia University:
- Two-sections: A — 40 students, B — 30 students
- Section A: 81\% (26/32) attended, 3\% (1/32) wanted to
- Section A: 3\% (1/32) used traditional office hours
- Section B: 43\% (9/21) attended, 5\% (1/21) wanted to
- Section B: 19\% (4/21) used traditional office hours
Quantitative Results from Mid-Term Questionnaires

2nd-Year Discrete Mathematics at Trent University:
- ≈ 25 students, mostly computer science
- 19 survey responses (after 4 office hours)
- 47% (9/19) attended office hours
- 16% (3/19) said they wanted to (although not asked)

1st-Year Calculus at Acadia University:
- Two-sections: A — 40 students, B — 30 students
- Section A: 81% (26/32) attended, 3% (1/32) wanted to
- Section A: 3% (1/32) used traditional office hours
- Section B: 43% (9/21) attended, 5% (1/21) wanted to
- Section B: 19% (4/21) used traditional office hours
Quantitative Results from Mid-Term Questionnaires

2nd-Year Discrete Mathematics at Trent University:
- ≈ 25 students, mostly computer science
- 19 survey responses (after 4 office hours)
- 47% (9/19) attended office hours
- 16% (3/19) said they wanted to (although not asked)

1st-Year Calculus at Acadia University:
- Two-sections: A — 40 students, B — 30 students
- Section A: 81% (26/32) attended, 3% (1/32) wanted to
- Section A: 3% (1/32) used traditional office hours
- Section B: 43% (9/21) attended, 5% (1/21) wanted to
- Section B: 19% (4/21) used traditional office hours
Quantitative Results from Mid-Term Questionnaires

2nd-Year Discrete Mathematics at Trent University:
- \(\approx 25 \) students, mostly computer science
- 19 survey responses (after 4 office hours)
- 47% (9/19) attended office hours
- 16% (3/19) said they wanted to (although not asked)

1st-Year Calculus at Acadia University:
- Two-sections: A — 40 students, B — 30 students
 - Section A: 81% (26/32) attended, 3% (1/32) wanted to
 - Section A: 3% (1/32) used traditional office hours
 - Section B: 43% (9/21) attended, 5% (1/21) wanted to
 - Section B: 19% (4/21) used traditional office hours
Quantitative Results from Mid-Term Questionnaires

2nd-Year Discrete Mathematics at Trent University:
- ≈ 25 students, mostly computer science
- 19 survey responses (after 4 office hours)
- 47% (9/19) attended office hours
- 16% (3/19) said they wanted to (although not asked)

1st-Year Calculus at Acadia University:
- Two-sections: A — 40 students, B — 30 students
- Section A: 81% (26/32) attended, 3% (1/32) wanted to
- Section A: 3% (1/32) used traditional office hours
- Section B: 43% (9/21) attended, 5% (1/21) wanted to
- Section B: 19% (4/21) used traditional office hours
Quantitative Results from Mid-Term Questionnaires

2nd-Year Discrete Mathematics at Trent University:
- ≈ 25 students, mostly computer science
- 19 survey responses (after 4 office hours)
- 47% (9/19) attended office hours
- 16% (3/19) said they wanted to (although not asked)

1st-Year Calculus at Acadia University:
- Two-sections: A — 40 students, B — 30 students
- Section A: 81% (26/32) attended, 3% (1/32) wanted to
- Section A: 3% (1/32) used traditional office hours
- Section B: 43% (9/21) attended, 5% (1/21) wanted to
- Section B: 19% (4/21) used traditional office hours
Quantitative Results from Mid-Term Questionnaires

2nd-Year Discrete Mathematics at Trent University:
- ≈ 25 students, mostly computer science
- 19 survey responses (after 4 office hours)
- 47% (9/19) attended office hours
- 16% (3/19) said they wanted to (although not asked)

1st-Year Calculus at Acadia University:
- Two-sections: A — 40 students, B — 30 students
- Section A: 81% (26/32) attended, 3% (1/32) wanted to
- Section A: 3% (1/32) used traditional office hours
- Section B: 43% (9/21) attended, 5% (1/21) wanted to
- Section B: 19% (4/21) used traditional office hours
Quantitative Results from Mid-Term Questionnaires

2nd-Year Discrete Mathematics at Trent University:
- ≈ 25 students, mostly computer science
- 19 survey responses (after 4 office hours)
- 47% (9/19) attended office hours
- 16% (3/19) said they wanted to (although not asked)

1st-Year Calculus at Acadia University:
- Two-sections: A — 40 students, B — 30 students
- Section A: 81% (26/32) attended, 3% (1/32) wanted to
- Section A: 3% (1/32) used traditional office hours
- Section B: 43% (9/21) attended, 5% (1/21) wanted to
- Section B: 19% (4/21) used traditional office hours
Qualitative Results from Mid-Term Questionnaires

Student Turnout:

- “[the instructor] can explain the questions to multiple people at once, which is convenient because people usually have the same questions.”
- “I’m much more comfortable with the online sessions.”
- “Online is less personal which can be good for a lot of students.”
- “... you can stay in your room with all your resources.”
- “Online Office Hours are more convenient...”
- “If more of them were possible I would of attended. Love the idea, though I live off-campus and this raises my chances of attending ‘office hours’ of any sort.”
Qualitative Results from Mid-Term Questionnaires

Student Turnout:

- “[the instructor] can explain the questions to multiple people at once, which is convenient because people usually have the same questions.”
- “I’m much more comfortable with the online sessions.”
- “Online is less personal which can be good for a lot of students.”
- “... you can stay in your room with all your resources.”
- “Online Office Hours are more convenient...”
- “If more of them were possible I would of attended. Love the idea, though I live off-campus and this raises my chances of attending ‘office hours’ of any sort.”
Qualitative Results from Mid-Term Questionnaires

Student Turnout:

- “[the instructor] can explain the questions to multiple people at once, which is convenient because people usually have the same questions.”
- “I’m much more comfortable with the online sessions.”
- “Online is less personal which can be good for a lot of students.”
- “... you can stay in your room with all your resources.”
- “Online Office Hours are more convenient...”
- “If more of them were possible I would of attended. Love the idea, though I live off-campus and this raises my chances of attending ‘office hours’ of any sort.”
Qualitative Results from Mid-Term Questionnaires

Student Turnout:

- “[the instructor] can explain the questions to multiple people at once, which is convenient because people usually have the same questions.”
- “I’m much more comfortable with the online sessions.”
- “Online is less personal which can be good for a lot of students.”
- “… you can stay in your room with all your resources.”
- “Online Office Hours are more convenient…”
- “If more of them were possible I would of attended. Love the idea, though I live off-campus and this raises my chances of attending ‘office hours’ of any sort.”
Qualitative Results from Mid-Term Questionnaires

Student Turnout:

- “[the instructor] can explain the questions to multiple people at once, which is convenient because people usually have the same questions.”
- “I’m much more comfortable with the online sessions.”
- “Online is less personal which can be good for a lot of students.”
- “... you can stay in your room with all your resources.”
- “Online Office Hours are more convenient...”
- “If more of them were possible I would of attended. Love the idea, though I live off-campus and this raises my chances of attending ‘office hours’ of any sort.”
Qualitative Results from Mid-Term Questionnaires

Student Turnout:

- “[the instructor] can explain the questions to multiple people at once, which is convenient because people usually have the same questions.”
- “I’m much more comfortable with the online sessions.”
- “Online is less personal which can be good for a lot of students.”
- “... you can stay in your room with all your resources.”
- “Online Office Hours are more convenient…”
- “If more of them were possible I would of attended. Love the idea, though I live off-campus and this raises my chances of attending ‘office hours’ of any sort.”
Qualitative Results from Mid-Term Questionnaires

Student Turnout:

- “[the instructor] can explain the questions to multiple people at once, which is convenient because people usually have the same questions.”
- “I’m much more comfortable with the online sessions.”
- “Online is less personal which can be good for a lot of students.”
- “… you can stay in your room with all your resources.”
- “Online Office Hours are more convenient…”
- “If more of them were possible I would of attended. Love the idea, though I live off-campus and this raises my chances of attending ‘office hours’ of any sort.”
Qualitative Results from Mid-Term Questionnaires

Student Turnout:

- “[the instructor] can explain the questions to multiple people at once, which is convenient because people usually have the same questions.”
- “I’m much more comfortable with the online sessions.”
- “Online is less personal which can be good for a lot of students.”
- “… you can stay in your room with all your resources.”
- “Online Office Hours are more convenient…”
- “If more of them were possible I would of attended. Love the idea, though I live off-campus and this raises my chances of attending ‘office hours’ of any sort.”
Qualitative Results from Mid-Term Questionnaires

Anonymity:

- “some students may feel uncomfortable asking questions”
- “sometimes students are uncomfortable approaching a prof. about problems”
- “some people don’t feel comfortable with everyone knowing it’s them”
- “...the student will be more confident in asking questions without embarrassment of asking a ‘stupid’ question.”
- “...It’s easier to risk asking something dumb when your prof and your friends don’t know it’s you.”
- “...if someone is embarrassed to ask questions they don’t have to worry about it.”
Qualitative Results from Mid-Term Questionnaires

Anonymity:

- “some students may feel uncomfortable asking questions”
- “sometimes students are uncomfortable approaching a prof. about problems”
- “some people don’t feel comfortable with everyone knowing it’s them”
- “...the student will be more confident in asking questions without embarrassment of asking a ’stupid’ question.”
- “...It’s easier to risk asking something dumb when your prof and your friends don’t know it’s you.”
- “...if someone is embarrassed to ask questions they don’t have to worry about it.”
Qualitative Results from Mid-Term Questionnaires

Anonymity:

- “some students may feel uncomfortable asking questions”
- “sometimes students are uncomfortable approaching a prof. about problems”
- “some people don’t feel comfortable with everyone knowing it’s them”
- “…the student will be more confident in asking questions without embarrassment of asking a ‘stupid’ question.”
- “…It’s easier to risk asking something dumb when your prof and your friends don’t know it’s you.”
- “…if someone is embarrassed to ask questions they don’t have to worry about it.”
Qualitative Results from Mid-Term Questionnaires

Anonymity:

- “some students may feel uncomfortable asking questions”
- “sometimes students are uncomfortable approaching a prof. about problems”
- “some people don’t feel comfortable with everyone knowing it’s them”
- “…the student will be more confident in asking questions without embarrassment of asking a ’stupid’ question.”
- “…It’s easier to risk asking something dumb when your prof and your friends don’t know it’s you.”
- “…if someone is embarrassed to ask questions they don’t have to worry about it.”
Qualitative Results from Mid-Term Questionnaires

Anonymity:

- “some students may feel uncomfortable asking questions”
- “sometimes students are uncomfortable approaching a prof. about problems”
- “some people don’t feel comfortable with everyone knowing it’s them”
- “…the student will be more confident in asking questions without embarrassment of asking a ‘stupid’ question.”
- “…It’s easier to risk asking something dumb when your prof and your friends don’t know it’s you.”
- “…if someone is embarrassed to ask questions they don’t have to worry about it.”
Anonymity:

- “some students may feel uncomfortable asking questions”
- “sometimes students are uncomfortable approaching a prof. about problems”
- “some people don’t feel comfortable with everyone knowing it’s them”
- “…the student will be more confident in asking questions without embarrassment of asking a ’stupid’ question.”
- “…It’s easier to risk asking something dumb when your prof and your friends don’t know it’s you.”
- “…if someone is embarrassed to ask questions they don’t have to worry about it.”
Anonymity:

- “some students may feel uncomfortable asking questions”
- “sometimes students are uncomfortable approaching a prof. about problems”
- “some people don’t feel comfortable with everyone knowing it’s them”
- “…the student will be more confident in asking questions without embarrassment of asking a ’stupid’ question.”
- “…It’s easier to risk asking something dumb when your prof and your friends don’t know it’s you.”
- “…if someone is embarrassed to ask questions they don’t have to worry about it.”
Qualitative Results from Mid-Term Questionnaires

Anonymity:

- “some students may feel uncomfortable asking questions”
- “sometimes students are uncomfortable approaching a prof. about problems”
- “some people don’t feel comfortable with everyone knowing it’s them”
- “…the student will be more confident in asking questions without embarrassment of asking a ‘stupid’ question.”
- “…It’s easier to risk asking something dumb when your prof and your friends don’t know it’s you.”
- “…if someone is embarrassed to ask questions they don’t have to worry about it.”
Passive Participation:

- “I myself have logged on and just sat and watched. I actually picked up a lot just sitting there!”
- “I don’t feel nearly as inferior as I used to. Lots of others have the same questions I do!”
- “It’s hard to ask questions in class because [you’re] surrounded by very smart people. You don’t want to be the only one who doesn’t know something”.

Negative Comments:

- “Students should have an equal opportunity to ask questions”
- “Hard to explain your problem online.”
Passive Participation:

- “I myself have logged on and just sat and watched. I actually picked up a lot just sitting there!”
- “I don’t feel nearly as inferior as I used to. Lots of others have the same questions I do!”
- “It’s hard to ask questions in class because [you’re] surrounded by very smart people. You don’t want to be the only one who doesn’t know something”.

Negative Comments:

- “Students should have an equal opportunity to ask questions”
- “Hard to explain your problem online.”
Passive Participation:

- “I myself have logged on and just sat and watched. I actually picked up a lot just sitting there!”
- “I don’t feel nearly as inferior as I used to. Lots of others have the same questions I do!”
- “It’s hard to ask questions in class because [you’re] surrounded by very smart people. You don’t want to be the only one who doesn’t know something”.

Negative Comments:

- “Students should have an equal opportunity to ask questions”
- “Hard to explain your problem online.”
Passive Participation:

- “I myself have logged on and just sat and watched. I actually picked up a lot just sitting there!”
- “I don’t feel nearly as inferior as I used to. Lots of others have the same questions I do!”
- “It’s hard to ask questions in class because [you’re] surrounded by very smart people. You don’t want to be the only one who doesn’t know something”.

Negative Comments:

- “Students should have an equal opportunity to ask questions”
- “Hard to explain your problem online.”
Passive Participation:

- “I myself have logged on and just sat and watched. I actually picked up a lot just sitting there!”
- “I don’t feel nearly as inferior as I used to. Lots of others have the same questions I do!”
- “It’s hard to ask questions in class because [you’re] surrounded by very smart people. You don’t want to be the only one who doesn’t know something”.

Negative Comments:

- “Students should have an equal opportunity to ask questions”
- “Hard to explain your problem online.”
Qualitative Results from Mid-Term Questionnaires

Passive Participation:

- “I myself have logged on and just sat and watched. I actually picked up a lot just sitting there!”
- “I don’t feel nearly as inferior as I used to. Lots of others have the same questions I do!”
- “It’s hard to ask questions in class because [you’re] surrounded by very smart people. You don’t want to be the only one who doesn’t know something”.

Negative Comments:

- “Students should have an equal opportunity to ask questions”
- “Hard to explain your problem online.”
Qualitative Results from Mid-Term Questionnaires

Passive Participation:
- “I myself have logged on and just sat and watched. I actually picked up a lot just sitting there!”
- “I don’t feel nearly as inferior as I used to. Lots of others have the same questions I do!”
- “It’s hard to ask questions in class because [you’re] surrounded by very smart people. You don’t want to be the only one who doesn’t know something”.

Negative Comments:
- “Students should have an equal opportunity to ask questions”
- “Hard to explain your problem online.”
Qualitative Results from Mid-Term Questionnaires

Passive Participation:

- “I myself have logged on and just sat and watched. I actually picked up a lot just sitting there!”
- “I don’t feel nearly as inferior as I used to. Lots of others have the same questions I do!”
- “It’s hard to ask questions in class because [you’re] surrounded by very smart people. You don’t want to be the only one who doesn’t know something”.

Negative Comments:

- “Students should have an equal opportunity to ask questions”
- “Hard to explain your problem online.”
Open Questions:

- Are the two types of anonymity the students mention (anonymity from peers, anonymity from professor) related?
- Do different students feel more strongly about one type than the other?
- Are students just using their online persona or are they trying to be anonymous?
- We also seem to be seeing an increase in the amount of risk-taking going on. Is this actually the case?
- The anxiety or fear we are seeing expressed in the surveys, is it purely mathematics-related, or is it something different?
- If this fear is actually affecting student performance, is that reflected in our students’ results after using enVision?
- Do online office hours reduce instructor anxiety as well?
Future Work

Open Questions:

- Are the two types of anonymity the students mention (anonymity from peers, anonymity from professor) related?
- Do different students feel more strongly about one type than the other?
- Are students just using their online persona or are they trying to be anonymous?
- We also seem to be seeing an increase in the amount of risk-taking going on. Is this actually the case?
- The anxiety or fear we are seeing expressed in the surveys, is it purely mathematics-related, or is it something different?
- If this fear is actually affecting student performance, is that reflected in our students’ results after using enVision?
- Do online office hours reduce instructor anxiety as well?
Future Work

Open Questions:

- Are the two types of anonymity the students mention (anonymity from peers, anonymity from professor) related?
- Do different students feel more strongly about one type than the other?
- Are students just using their online persona or are they trying to be anonymous?
- We also seem to be seeing an increase in the amount of risk-taking going on. Is this actually the case?
- The anxiety or fear we are seeing expressed in the surveys, is it purely mathematics-related, or is it something different?
- If this fear is actually affecting student performance, is that reflected in our students’ results after using enVision?
- Do online office hours reduce instructor anxiety as well?
Future Work

Open Questions:

- Are the two types of anonymity the students mention (anonymity from peers, anonymity from professor) related?
- Do different students feel more strongly about one type than the other?
- Are students just using their online persona or are they trying to be anonymous?
- We also seem to be seeing an increase in the amount of risk-taking going on. Is this actually the case?
- The anxiety or fear we are seeing expressed in the surveys, is it purely mathematics-related, or is it something different?
- If this fear is actually affecting student performance, is that reflected in our students’ results after using enVision?
- Do online office hours reduce instructor anxiety as well?
Future Work

Open Questions:

- Are the two types of anonymity the students mention (anonymity from peers, anonymity from professor) related?
- Do different students feel more strongly about one type than the other?
- Are students just using their online persona or are they trying to be anonymous?
- We also seem to be seeing an increase in the amount of risk-taking going on. Is this actually the case?
- The anxiety or fear we are seeing expressed in the surveys, is it purely mathematics-related, or is it something different?
- If this fear is actually affecting student performance, is that reflected in our students’ results after using enVision?
- Do online office hours reduce instructor anxiety as well?
Future Work

Open Questions:

- Are the two types of anonymity the students mention (anonymity from peers, anonymity from professor) related?
- Do different students feel more strongly about one type than the other?
- Are students just using their online persona or are they trying to be anonymous?
- We also seem to be seeing an increase in the amount of risk-taking going on. Is this actually the case?
- The anxiety or fear we are seeing expressed in the surveys, is it purely mathematics-related, or is it something different?
- If this fear is actually affecting student performance, is that reflected in our students’ results after using enVision?
- Do online office hours reduce instructor anxiety as well?
Future Work and Conclusions

Open Questions:

- Are the two types of anonymity the students mention (anonymity from peers, anonymity from professor) related?
- Do different students feel more strongly about one type than the other?
- Are students just using their online persona or are they trying to be anonymous?
- We also seem to be seeing an increase in the amount of risk-taking going on. Is this actually the case?
- The anxiety or fear we are seeing expressed in the surveys, is it purely mathematics-related, or is it something different?
- If this fear is actually affecting student performance, is that reflected in our students’ results after using enVision?
- Do online office hours reduce instructor anxiety as well?
Future Work

Open Questions:

- Are the two types of anonymity the students mention (anonymity from peers, anonymity from professor) related?
- Do different students feel more strongly about one type than the other?
- Are students just using their online persona or are they trying to be anonymous?
- We also seem to be seeing an increase in the amount of risk-taking going on. Is this actually the case?
- The anxiety or fear we are seeing expressed in the surveys, is it purely mathematics-related, or is it something different?
- If this fear is actually affecting student performance, is that reflected in our students’ results after using enVision?
- Do online office hours reduce instructor anxiety as well?
Future Work

Open Questions:

- Are the two types of anonymity the students mention (anonymity from peers, anonymity from professor) related?
- Do different students feel more strongly about one type than the other?
- Are students just using their online persona or are they trying to be anonymous?
- We also seem to be seeing an increase in the amount of risk-taking going on. Is this actually the case?
- The anxiety or fear we are seeing expressed in the surveys, is it purely mathematics-related, or is it something different?
- If this fear is actually affecting student performance, is that reflected in our students’ results after using enVision?
- Do online office hours reduce instructor anxiety as well?
Future Work

enVision 2.0:

- License: Open Source (Gnu Public License – GPL)
- AJAX based
- Scalable Vector Graphics (SVG)
- Load and Save PDF files
- Import MathML documents
- Audio support
- Database support for reusable objects/content
- Discipline specific “Content Packs”
- Release: Fall 2006
Future Work

enVision 2.0:

- License: Open Source (Gnu Public License – GPL)
- AJAX based
- Scalable Vector Graphics (SVG)
- Load and Save PDF files
- Import MathML documents
- Audio support
- Database support for reusable objects/content
- Discipline specific “Content Packs”
- Release: Fall 2006
Future Work

enVision 2.0:

- License: Open Source (Gnu Public License – GPL)
- AJAX based
- Scalable Vector Graphics (SVG)
- Load and Save PDF files
- Import MathML documents
- Audio support
- Database support for reusable objects/content
- Discipline specific “Content Packs”
- Release: Fall 2006
Future Work

enVision 2.0:

- License: Open Source (Gnu Public License – GPL)
- AJAX based
 - Scalable Vector Graphics (SVG)
 - Load and Save PDF files
 - Import MathML documents
- Audio support
- Database support for reusable objects/content
- Discipline specific “Content Packs”
- Release: Fall 2006
Future Work

enVision 2.0:
- License: Open Source (Gnu Public License – GPL)
- AJAX based
- Scalable Vector Graphics (SVG)
- Load and Save PDF files
- Import MathML documents
- Audio support
- Database support for reusable objects/content
- Discipline specific “Content Packs”
- Release: Fall 2006
Future Work

enVision 2.0:
- License: Open Source (Gnu Public License – GPL)
- AJAX based
- Scalable Vector Graphics (SVG)
- Load and Save PDF files
- Import MathML documents
- Audio support
- Database support for reusable objects/content
- Discipline specific “Content Packs”
- Release: Fall 2006
Future Work

enVision 2.0:

- License: Open Source (Gnu Public License – GPL)
- AJAX based
- Scalable Vector Graphics (SVG)
- Load and Save PDF files
- Import MathML documents
- Audio support
- Database support for reusable objects/content
- Discipline specific “Content Packs”
- Release: Fall 2006
Future Work

enVision 2.0:

- License: Open Source (Gnu Public License – GPL)
- AJAX based
- Scalable Vector Graphics (SVG)
- Load and Save PDF files
- Import MathML documents
- Audio support
- Database support for reusable objects/content
- Discipline specific “Content Packs”
- Release: Fall 2006
Future Work

enVision 2.0:
- License: Open Source (Gnu Public License – GPL)
- AJAX based
- Scalable Vector Graphics (SVG)
- Load and Save PDF files
- Import MathML documents
- Audio support
- Database support for reusable objects/content
- Discipline specific “Content Packs”
- Release: Fall 2006
Future Work

enVision 2.0:
- License: Open Source (Gnu Public License – GPL)
- AJAX based
- Scalable Vector Graphics (SVG)
- Load and Save PDF files
- Import MathML documents
- Audio support
- Database support for reusable objects/content
- Discipline specific “Content Packs”
- Release: Fall 2006
Future Work

enVision 2.0:

- License: Open Source (Gnu Public License – GPL)
- AJAX based
- Scalable Vector Graphics (SVG)
- Load and Save PDF files
- Import MathML documents
- Audio support
- Database support for reusable objects/content
- Discipline specific “Content Packs”
- Release: Fall 2006
Summary/Conclusions:

- Developing new technologies to foster online communication in quantitative disciplines
- Exploring the use of anonymous online office hours to:
 - Reduce student anxiety
 - Increase student-instructor contact
 - Increase efficiency
 - Increase engagement and multi-way dialog
Summary/Conclusions:

- Developing new technologies to foster online communication in quantitative disciplines
- Exploring the use of anonymous online office hours to:
 - Reduce student anxiety
 - Increase student-instructor contact
 - Increase efficiency
 - Increase engagement and multi-way dialog
Summary/Conclusions:

● Developing new technologies to foster online communication in quantitative disciplines

● Exploring the use of anonymous online office hours to:
 ● Reduce student anxiety
 ● Increase student-instructor contact
 ● Increase efficiency
 ● Increase engagement and multi-way dialog
Summary/Conclusions:

- Developing new technologies to foster online communication in quantitative disciplines
- Exploring the use of anonymous online office hours to:
 - Reduce student anxiety
 - Increase student-instructor contact
 - Increase efficiency
 - Increase engagement and multi-way dialog
Summary/Conclusions:

- Developing new technologies to foster online communication in quantitative disciplines
- Exploring the use of anonymous online office hours to:
 - Reduce student anxiety
 - Increase student-instructor contact
 - Increase efficiency
 - Increase engagement and multi-way dialog
Summary/Conclusions:

- Developing new technologies to foster online communication in quantitative disciplines
- Exploring the use of anonymous online office hours to:
 - Reduce student anxiety
 - Increase student-instructor contact
 - Increase efficiency
 - Increase engagement and multi-way dialog
Summary/Conclusions:

- Developing new technologies to foster online communication in quantitative disciplines
- Exploring the use of anonymous online office hours to:
 - Reduce student anxiety
 - Increase student-instructor contact
 - Increase efficiency
 - Increase engagement and multi-way dialog
Summary/Conclusions:

- Developing new technologies to foster online communication in quantitative disciplines
- Exploring the use of anonymous online office hours to:
 - Reduce student anxiety
 - Increase student-instructor contact
 - Increase efficiency
 - Increase engagement and multi-way dialog
References

enVision: http://www.xiom.org

References

enVision: http://www.xiom.org

