A new model for the learning curve

James Curry
Anne Dougherty
Brandon Booth
Jay Jones

Department of Applied Mathematics
University of Colorado, Boulder
The 2005 MERLOT Editor’s Choice Award
Presented to the
Department of Applied Mathematics at the
University of Colorado at Boulder
For the
Mathematical Visualization Toolkit
Team MVT

- Faculty Sponsors: James H. Curry
 Anne Dougherty

- Current MVT developers: Jay Jones Brandon Booth Tom Josephson
 Luke Ashely Gordon Ian Her Many Horses

- J.R. WoodhullLogicon teaching professorship in Applied Mathematics

- Sun Microsystems

2005 Development Team
Past CU Student Developers

2004

2003

2002...
History

- MVT has been in development since 1998
- Sponsored by the Department of Applied Mathematics and SUN Microsystems
- Developed exclusively by University of Colorado at Boulder students
- All source code is platform-independent and written using web-based Java technologies
MVT Outline

- What is MVT?
 - Motivations
 - Solution
- Features
- Uses of MVT
- Where do I get it?
What is MVT?

• MVT is a set of visual and computational tools designed to help students better visualize the concepts of Calculus

• The program contains:
 • Scientific calculator
 • Plotting tools
 • Numerical tools
 • Linear algebra tools
 • Differential equations tools
 • Content-specific applets
 • Other Calculus visualization tools
Motivation: Problems with traditional mathematical software

- Educational obstacles
- Not targeted for lower division mathematics
- Large buy-in required: needs basic understanding of programming
Motivation:
Problems with traditional mathematical software

- Departmental obstacles
- Expensive licensing fees
- Not portable across platforms
- Lack of accessibility
The Solution: “Mathematical Visualization Toolkit”
MVT as the solution

- Addresses **educational obstacles** by focusing on student needs
- **Visualization tools**

3D Function Plotter
MVT as the solution

- Addresses **educational obstacles** by focusing on student needs
- **Visualization tools**
- **Topic-specific educational applications**

2D Function Integration
MVT as the solution - Visualization

- Users can manipulate curves, surfaces and vectors in a variety of coordinate systems
- Zooming, rotating, moving
MVT as the solution

- Addresses departmental obstacles
- Free
- Java-based
- Accessible via any web browser
- Platform independent
Feature Overview

- Numerical tools
- Graphical tools
- Topic-specific educational applets
- Tutorial-style help system
- What makes MVT unique?

Demo
Numerical Tools

- Calculator
- Linear Algebra tools
 - ODE solvers
 - Matrix tools
- Root Finding
- Differentiation and Integration
Graphing Tools

Robust set of plotting tools

- 2D & 3D
- Vector Fields
- Implicit
- Contour
- ODE
- Alternative coordinate systems

MVT tool menu
Educational applets

- Focus on specific topics covered in lower division mathematics

Riemann Sums applet

- Designed for the students
Help System

- Tutorial-style help page for every tool

Help Browser
Uniqueness!

- MVT is sticky
- Intuitive Graphical User Interface

Appearance Options

Tool Tips
Uses of MVT

- Presented in a two-week professional development course for high school and middle school teachers
- Used at Front Range Community College in Colorado
- Used in Calculus I, II, III and Differential Equations courses at CU Boulder
- All students are encouraged to use MVT for homework and labs
Uses of MVT

- High School
- Community College
- University

2D Function Plotting

Polar

Tangent Slider (derivatives)
Thank you for coming

- On behalf of the Department of Applied Mathematics at the University of Colorado, Boulder
- http://amath.colorado.edu/java

James Curry
Anne Dougherty
Brandon Booth
Jay Jones